Когда биологические часы меняют свой ритм


Мы привыкли считать суточные ритмы чем-то постоянным, незыблемым. Биологическим часам нужно подчиняться — либо будет очень плохо. Однако любой организм существует в изменчивой среде: сегодня холодно, завтра тепло, в этом году урожай, в следующем — неурожай, и т. д. То есть должна быть какая-то пластичность, чтобы к таким изменениям приспосабливаться. И очевидно, что система биологических ритмов тоже должна как-то чувствовать перемены во внешнем мире и реагировать на них. Как показали исследования учёных из Университета Вандербильта (США), суточные ритмы действительно допускают отклонения, причём имеет смысл говорить даже не об отклонениях, а о нескольких ритмах, между которыми организм может переключаться.

 




В основе вариабельности суточных ритмов лежит вырожденность генетического кода. Как известно, белки построены из двадцати аминокислот, однако четыре буквы генетического алфавита позволяют создать гораздо больше аминокислотных кодов. Аминокислоте соответствует триплет, комбинация из трёх нуклеотидов, и в итоге оказалось, что одной аминокислоте могут соответствовать несколько кодирующих слов-триплетов. (Например, аминокислоте пролину соответствуют триплеты ССА, ССG и ССС, где С — цитозин, Ааденин, G — гуанин.) Не вдаваясь в подробности, следует сказать, что разные триплеты читаются рибосомой с разной скоростью, следовательно, тот белок, в котором есть такие триплеты, будет синтезироваться легче и в бóльших количествах. В связи с этим родилась молекулярно-эволюционная идея о том, что самые важные гены в клетке используют наиболее оптимальные, то есть легкочитаемые кодоны.

Гипотеза оказалась не совсем верной. Исследователи из Университета Вандербильта попробовали оптимизировать гены биологических часов у сине-зелёных водорослей и плесневых грибков. У некоторых таких генов были трудночитаемые кодоны, и учёные заменили их на легкочитаемые (при этом, напомним ещё раз, аминокислота оставалась прежней). Так вот, после такой операции биологические часы у грибка просто останавливались! То есть, как пишут исследователи в журнале Nature, белкам биологических ритмов вовсе не нужна была высокая скорость синтеза. По-видимому, из-за высокой скорости синтеза эти белки не могут правильно свернуться, не могут приобрести правильную пространственную форму и объединиться с другими.

Но более интересным оказался эффект у сине-зелёных водорослей. Когда у них оптимизировали белки биологических часов, сами часы продолжили идти, но выживаемость цианобактерий сильно упала. Оказалось, что «усовершенствованные» часы лучше работали при естественной температуре, при которой сине-зелёные живут в естественной среде. И, казалось бы, оптимизация должна была повысить приспособленность цианобактерий. Но, кроме того, у часов увеличивался период, и цианобактерия начинала жить по 30-часовому циклу. В нормальных 24-часовых сутках она впадала в стресс, что сказывалось на её жизнеспособности. То есть естественный отбор работал тут на ухудшение качества кодонов в гене.

Исследователи делают вывод, что в генах биологических часов важны именно несовершенные, медленные синонимичные кодоны. Такой способ регуляции генетической активности — на уровне трансляции с помощью трудночитаемых кодонов — известен давно, но до сих пор его недооценивали. Тем удивительнее было увидеть его в такой ответственной области, как регуляция суточного ритма. Авторы работы полагают, что клетка может «подводить часы» с учётом различных факторов, хотя для того, чтобы утверждать это с полной уверенностью, нужны дополнительные эксперименты. Пока же можно сделать два вывода: «плохой» кодон не всегда плох, а биологические часы не столь жёстки и неизменны, как может показаться.

Подготовлено по материалам Университета Вандербильта.